home *** CD-ROM | disk | FTP | other *** search
- abs()
- =====
-
- sypnosis:
- abs(x)
-
- arguments:
- x: number, vector
-
- result:
- number
-
- If x is a number, the absolute of x is returned. If x is a
- vector, the (euclidian) length of the vector is returned.
-
- addrows()
- =========
-
- sypnosis:
- addrows(m,r1,r2,x)
-
- arguments:
- m: matrix
- r1,r2: integer between 0 and rows(m)
- x: number
-
- result:
- matrix
-
- Returns the matrix m, except that row r1 is replaced by (row
- r1) + x * (row r2).
-
- arc()
- =====
-
- sypnosis:
- arc(x)
-
- arguments:
- x: number
-
- result:
- number
-
- If x is a complex number, the angle between x and the x-axis in
- the gaussian plane will be returned, which is defined as atan(im(x) /
- re(x))
-
- arc() of an positive real number is defined as 1 and of a
- negative as -1.
-
- average()
- =========
-
- sypnosis:
- average(s)
-
- arguments:
- s: set
-
- result:
- depends on set contents
-
- Returns the arithmetic average of the set contents.
-
- cols()
- ======
-
- sypnosis:
- cols(m)
-
- arguments:
- m: matrix
-
- result:
- number
-
- Returns the number of columns of the matrix m.
-
- combine()
- =========
-
- sypnosis:
- combine(a1, a2...)
-
- arguments:
- a1, a2...: vector, matrix
-
- result:
- matrix
-
- Returns a matrix constructed from the given column vectors and
- matrices.
-
- conj()
- ======
-
- sypnosis:
- conj(x)
-
- arguments:
- x: number
-
- result:
- number
-
- Returns the complex conjunction of x.
-
- const()
- =======
-
- sypnosis:
- const(name1,name2...)
-
- arguments:
- name1,name2...: constant names
-
- result:
- n/a
-
- const() will create constants with the given names.
-
- You can specify an optional type identifier for each name by entering
- name:type, see Manual/Types.
-
- count()
- =======
-
- sypnosis:
- count(s)
-
- arguments:
- s: set
-
- result:
- number
-
- Return the number of elementes in the set s.
-
- cvector()
- =========
-
- sypnosis:
- cvector(m,c)
-
- arguments:
- m: matrix
- c: integer between 0 and cols(m)
-
- result:
- vector
-
- Returns a vector, consisting of the column c of the matrix m.
-
- debug()
- =======
-
- sypnosis:
- debug(string)
-
- arguments:
- string: any string
-
- result:
- n/a
-
- This will add the string to the debug list.
-
- det()
- =====
-
- sypnosis:
- det(m)
-
- arguments:
- m: matrix
-
- result:
- number
-
- Returns the determinant of the matrix m.
-
- diff()
- ======
-
- sypnosis:
- diff(ex,var)
-
- arguments:
- ex: any expression
- var: variable name
-
- result:
- depends on expression type
-
- This will calculate the first (partial) derivation of the given
- expression.
-
- Some examples:
- f'(x) = diff(x^2, x)
-
- f(x) = x^2
- f'(x) = diff(f, x)
-
- f(x, y) = x^2 + y^3
- f_x'(x, y) = diff(f, x)
- f_y'(x, y) = diff(f, y)
- g(x) = diff(f(x,1), x)
-
- Remark
- ------
-
- If you use diff() as a 'stand alone' expression that means not as
- the right side of an function definition and the used variables are not
- defined in this context and they are created as constant objects. This
- can lead to errors if the same name was used earlier but with another
- type, e.g.:
- x=[1,2,3]
- ...
- f(x)=sin(x)
- diff(f, x)
-
- You should then declare x as a constant before you use diff(), or
- use something like f'(x) = diff(f, x).
-
- dim()
- =====
-
- sypnosis:
- dim(v)
-
- arguments:
- v: vector
-
- result:
- number
-
- Return the dimension of the vector v.
-
- dispose()
- =========
-
- sypnosis:
- dispose(name1,name2,...)
-
- arguments:
- name1,name2,...: object names
-
- result:
- n/a
-
- This will dispose the previously defined objects with the given name.
-
- disposeall()
- ============
-
- sypnosis:
- disposeall()
-
- arguments:
- n/a
-
- result:
- n/a
-
- This will dispose all previously defined objects.
-
- do()
- ====
-
- sypnosis:
- do(ex1,ex2,...)
-
- arguments:
- ex1,ex2,...: expression of any type
-
- result:
- result of the last expression
-
- This is a synonym for an expression list (see Manual/Expressions).
- E.g.
- {debug("Hello world !"), sin(2)}
- do(debug("Hello world !"), sin(2))
-
- drop()
- ======
-
- sypnosis:
- drop(ex)
-
- arguments:
- ex: any
-
- result:
- n/a
-
- Evaluates ex, without returning a result.
-
- eq()
- ====
-
- sypnosis:
- eq(left,right)
-
- arguments:
- left,right: expressions of any type
-
- result:
- equation
-
- Creates an equation with the given left and right side.
-
- eqleft(), eqright()
- ===================
-
- sypnosis:
- eqleft(e), eqright(e)
-
- arguments:
- e: equation
-
- result:
- depends on equation contents
-
- Return the left or right side of the equation e.
-
- error()
- =======
-
- sypnosis:
- error(s)
-
- arguments:
- s: set of number elements
-
- result:
- number
-
- Returns the statistical error of the average value, which is
- error(s) := sigma(s)/(sqrt(count(s)).
-
- eval()
- ======
-
- sypnosis:
- eval(ex)
-
- arguments:
- ex: expression on any type
-
- result:
- depends on the expression
-
- This will evaluate the given expression. Parameters are replaced, too
- (see Manual/parameter).
-
- exp()
- =====
-
- sypnosis:
- exp(x)
-
- arguments:
- x: number
-
- result:
- number
-
- Return e to the power of x.
-
- fak()
- =====
-
- sypnosis:
- fak(x)
-
- arguments:
- x: integer
-
- result:
- number
-
- Returns x! (factorial). If x <= 0, 0 is returned.
-
- for()
- =====
-
- sypnosis:
- for(init,cond,ex,end)
-
- arguments:
- init: any
- cond: boolean
- ex: any
- end: any
- result:
- depends on end
-
- First the init expression will be evaluated, which is usually an
- variable definition. That ex will be repeatedly evaluated as long as
- cond evaluates to TRUE. When the loop is finished (cond is
- FALSE), end will be evaluated and it's result will be returned.
- f(x) = for({n=0, f(x)=0}, n<10, {f(x)=f(x)+x^n, n=n+1}, f(x))
-
- if()
- ====
-
- sypnosis:
- if(cond,ex1,ex2)
-
- arguments:
- cond: boolean
- ex1,ex2: any
-
- result:
- depends on expressions
-
- If cond evaluates to TRUE, ex1 will be evaluated, else
- ex2.
-
- im()
- ====
-
- sypnosis:
- im(x)
-
- arguments:
- x: number
-
- result:
- number
-
- Returns the imaginary part of x.
-
- include()
- =========
-
- sypnosis:
- include(path)
-
- arguments:
- path: path of the include file
-
- result:
- n/a
-
- This will load and process a file from the directory Include. See
- also Manual/Libraries.
-
- inv()
- =====
-
- sypnosis:
- inv(x)
-
- arguments:
- x: number
-
- result:
- number
-
- Returns the invers 1/x.
-
- invert()
- ========
-
- sypnosis:
- invert(m)
-
- arguments:
- m: matrix
-
- result:
- matrix
-
- Returns the invers of the matrix m.
-
- isatomar()
- ==========
-
- sypnosis:
- isatomar(x)
-
- arguments:
- x: any
-
- result:
- boolean
-
- Return TRUE, if x is an atomar object.
-
- Type checking
- =============
-
- sypnosis:
- isnumber(x), iscomplex(x), isvector(x),
- ismatrix(x), isboolean(x), isset(x),
- isequation(x)
-
- arguments:
- x: any
-
- result:
- boolean
-
- Return TRUE, if x is of the specified type.
-
- ln(), log()
- ===========
-
- sypnosis:
- ln(x), log(x)
-
- arguments:
- x: positive number
-
- result:
- number
-
- Returns ln x (base e), or log x (base 10).
-
- multrow()
- =========
-
- sypnosis:
- multrow(m,r,x)
-
- arguments:
- m: matrix
- r: integer between 0 and rows(m)
- x: number
-
- result:
- matrix
-
- Returns the matrix m, except that rows r is multiplied with
- x.
-
- nand()
- ======
-
- sypnosis:
- nand(b1,b2)
-
- arguments:
- b1,b2: boolean
-
- result:
- boolean
-
- Return FALSE, if b1 and b2 are TRUE, else TRUE.
-
- neg()
- =====
-
- sypnosis:
- neg(x)
-
- arguments:
- x: number, vector, matrix
-
- result:
- number, vector, matrix
-
- Returns the negative of the given number, vector or matrix. For
- Vectors and Matrices, all components are negated.
-
- nor()
- =====
-
- sypnosis:
- nor(b1,b2)
-
- arguments:
- b1,b2: boolean
-
- result:
- boolean
-
- Return TRUE, if b1 and b2 are FALSE, else FALSE.
-
- norm()
- ======
-
- sypnosis:
- norm(a)
-
- arguments:
- a: number, vector, matrix
-
- result:
- number, vector, matrix
-
- If a is a vector, the normed vector will be returned (the vector
- pointing into the same direction, but with abs(a) = 1). If a is a
- matrix every column vector will be normed.
-
- If a is a complex number it will be treated as a two-dimensional
- vector. A real number will always be normed to one.
-
- orthogonal()
- ============
-
- sypnosis:
- orthogonal(m)
-
- arguments:
- m: matrix
-
- result:
- matrix
-
- Use the Gram-Schmitt-algorithm to create a orthogonalized base of the
- column vectors of m.
-
- quickhelp()
- ===========
-
- sypnosis:
- quickhelp(keyword)
-
- arguments:
- keyword: keyword to search for
-
- result:
- a short description
-
- Shows a short description for the given keyword. Same as
- ?keyword. See also Manual/Online Help.
-
- random(), irandom(), randomseed()
- =================================
-
- sypnosis:
- random(x), irandom(n), randomseed(x)
-
- arguments:
- x: positive number, optional, defaults to 1
- n: positiv integer
-
- result:
- random(), irandom(): number
- randomseed(): n/a
-
- random(x) returns a random number between 0 and x; you
- may omit x, which defaults then to 1.
-
- irandom(n) returns a integer between 0 and n.
-
- randomseed(n) sets the initial value for the random
- algorithm.
-
- rank()
- ======
-
- sypnosis:
- rank(m)
-
- arguments:
- m: matrix
-
- result:
- number
-
- Returns the rank of the matrix m.
-
- re()
- ====
-
- sypnosis:
- re(x)
-
- arguments:
- x: number
-
- result:
- number
-
- Returns the real part of x.
-
- rows()
- ======
-
- sypnosis:
- rows(m)
-
- arguments:
- m: matrix
-
- result:
- number
-
- Returns the number of rows of the matrix m.
-
- rvector()
- =========
-
- sypnosis:
- rvector(m,r)
-
- arguments:
- m: matrix
- r: integer between 0 and rows(m)
-
- result:
- vector
-
- Returns a vector, consisting of the row r of the matrix m.
-
- set()
- =====
-
- sypnosis:
- set(a1,a2,...)
-
- arguments:
- a1,a2,...: any
-
- result:
- set
-
- Creates a set of the given elements. All elements must be of the same
- type.
-
- showhelp()
- ==========
-
- sypnosis:
- showhelp(keyword)
-
- arguments:
- keyword: keyword to search for
-
- result:
- n/a
-
- Shows detailed help for the given keyword. Same as ??keyword. See
- also Manual/Online Help.
-
- sigma()
- =======
-
- sypnosis:
- sigma(s)
-
- arguments:
- s: set of number elements
-
- result:
- number
-
- Returns the standart error of the given set elements, which is
- defined as sqrt(sum((x - y)^2)/(count(s-1) with y =
- average(s).
-
- sign()
- ======
-
- sypnosis:
- sign(x)
-
- arguments:
- x: number
-
- result:
- number
-
- Returns -1, if x < 0; 0, if x = 0 and 1 if x > 0.
-
- solve()
- =======
-
- sypnosis:
- solve(m)
-
- arguments:
- m: matrix
-
- result:
- matrix
-
- Apply the gaussian algorithm to the matrix m.
-
- spur()
- ======
-
- sypnosis:
- spur(m)
-
- arguments:
- m: matrix
-
- result:
- number
-
- Return the spur of the matrix m. m must be square. spur(m)
- := sum(x_ii), m = [x_ij, 1<=i<=n, 1<=j<=n]
-
- sqrt()
- ======
-
- sypnosis:
- sqrt(x)
-
- arguments:
- x: positive number
-
- result:
- number
-
- Returns the square root of x.
-
- swaprows()
- ==========
-
- sypnosis:
- swaprows(m,r1,r2)
-
- arguments:
- m: matrix
- r1,r2: integer between 0 and rows(m)
-
- result:
- matrix
-
- Return the matrix m, except that rows r1 and r2 are swapped.
-
- taylor()
- ========
-
- sypnosis:
- taylor(ex,x,a,n)
-
- arguments:
- ex: expression of number type
- x: number
- a: number
- n: positive integer
-
- result:
- expression of number type
-
- This will calculate a taylor approximation for the given expression
- of the variable x at the point a of the given grade n. If you
- omit n, a default of 2 will be used, e.g.:
- f(x) = taylor(sin(x), x, 0)
- g(x) = taylor(ln(x), x, 1)
- h(x) = taylor(exp(x), x, 0, 5)
-
- See also the remark to the diff() function. The same restrictions
- apply to the taylor() function.
-
- trans()
- =======
-
- sypnosis:
- trans(m)
-
- arguments:
- m: matrix
-
- result:
- matrix
-
- Returns the transposed matrix of m.
-
- Trigonometric functions
- =======================
-
- sypnosis:
- sin(x), cos(x), tan(x), cot(x), asin(x),
- acos(x), atan(x), acot(x), sinh(x), cosh(x),
- tanh(x), asinh(x), acosh(x), atanh(x)
-
- arguments:
- x: number
-
- result:
- number
-
- well, the well known trigonometric functions, should I say more...
-
- umatrix()
- =========
-
- sypnosis:
- umatrix(n)
-
- arguments:
- n: positive integer
-
- result:
- matrix
-
- This will create a standart matrix of the given size.
-
- window()
- ========
-
- sypnosis:
- window(name)
-
- arguments:
- name: object name
-
- result:
- n/a
-
- This will open a window, displaying the named object.
-
-